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Let Sk be the set of separable states on B(Cm ⊗ Cn) admitting a representation as a convex combination of
k pure product states, or fewer. If m > 1, n > 1, and k ≤ max (m,n), we show that Sk admits a subset Vk
such that Vk is dense and open in Sk, and such that each state in Vk has a unique decomposition as a convex
combination of pure product states, and we describe all possible convex decompositions for a set of separable
states that properly contains Vk. In both cases we describe the associated faces of the space of separable
states, which in the first case are simplexes, and in the second case are direct convex sums of faces that are
isomorphic to state spaces of full matrix algebras. As an application of these results, we characterize all affine
automorphisms of the convex set of separable states, and all automorphisms of the state space of B(Cm⊗Cn)
that preserve entanglement and separability.
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I. INTRODUCTION

A state on the algebra B(Cm ⊗ Cn) of linear opera-
tors is separable if it is a convex combination of product
states. States that are not separable are said to be en-
tangled, and are of substantial interest in quantum infor-
mation theory. Easily applied conditions for separability
are known only for special cases, e.g., if m = n = 2, then
a state is separable iff its associated density matrix has
positive partial transpose (“PPT”)6,22. Other necessary
and sufficient conditions are known, e.g., cf. Ref. 6, but
are not easily applied in practice. An open question of
great interest is to find a simple necessary and sufficient
condition for a state to be separable.

A product state ω ⊗ τ is a pure state iff ω and τ are
pure states. Thus a separable state is precisely one that
admits a representation as a convex combination of pure
product states. It is natural to ask the extent to which
this decomposition is unique. That is the main topic
of this article. We will first summarize our results, and
then discuss some related previous results about product
vectors and about the tetrahedron/octahedron picture of
separable states on B(C2 ⊗ C2).

For the full state space K of B(Cm ⊗ Cn) each non-
extreme point can be decomposed into extreme points
in many different ways. But for the space S of separa-
ble states the situation is totally different. While non-
extreme points with many different decompositions exist
(and are easy to find) in S as well as in K, there are
in S also plenty of points for which the decomposition is
unique.

DiVincenzo, Terhal, and Thapliyal5 defined the opti-
mal ensemble cardinality of a separable state ρ to be k if
k is the minimal number of pure product states required
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for a convex decomposition of ρ. This cardinality can-
not be less than the rank of ρ, but can exceed the rank5.
Lockhart19 used the term “optimal ensemble length” for
the same notion. For brevity, we will simply call this
number the length of ρ, and we denote the set of separa-
ble states of length at most k by Sk.

Assume that m ≤ n. For each k, let Vk be the set
of states that are convex combinations of product vector
states ωx1⊗y1 , . . . , ωxp⊗yp where x1, . . . , xp are distinct
(up to scalar multiples) and y1, . . . , yp are linearly inde-
pendent, with p ≤ k. In Corollary 5 we show that for
each k each state in Vk has a unique decomposition into
product vector states. (Actually, we show each state in
Vk generates a face of S which is a simplex, from which
the uniqueness follows.) Theorem 6 shows that the prop-
erty of having a unique decomposition into product vec-
tor states is generic in Sk for k ≤ n, by showing that Vk
is dense and open in Sk.

Here openness is with respect to the relative topology
of Sk; Vk is not open or dense in S or K if mn > 1. (See
the remarks after Theorem 6). Indeed it would be sur-
prising if a subset of low rank separable states were open
and dense in the set of all states of that rank, since low
rank states are almost surely entangled24,30, and in gen-
eral S has measure which is a decreasingly small fraction
of the measure of K as m,n increase3,28.

We also obtain results on the possible decompositions
of states that are convex combinations of vector states
for vectors {xi ⊗ yi | 1 ≤ i ≤ p} with y1, . . . , yp indepen-
dent without the assumption that x1, . . . , xp are distinct.
We show such states have a unique decomposition as a
convex combination of product states ρi ⊗ σi that are
not necessarily pure, but with the property that each of
them generates a face of S which is also a face of K
and is affinely isomorphic to the state space of B(Cpi)
for a suitable pi. From this it follows that the ambigu-
ity in decompositions for a given state in this class is
restricted to the ambiguity in decompositions for points
in the state space of the matrix algebras B(Cpi). For a
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complete description of the possible decompositions of a
state on B(Cp), see Refs. 10, 16, and 26.

In the last section of the current article, we use our
results on the facial structure of S to show that every
affine automorphism of the space S of separable states
on B(Cm ⊗Cn) is given by a composition of the duals of
the maps that are (i) conjugation by local unitaries (i.e.,
unitaries of the form U1 ⊗ U2) (ii) the two partial trans-
pose maps, or (iii) the swap automorphism that takes
A⊗B to B ⊗A (if m = n). A consequence is a descrip-
tion of the affine automorphisms Φ of the state space such
that Φ preserves entanglement and separability.

There is related work of Hulpke et al11. They say a
linear map L on Cm ⊗ Cn preserves qualitative entan-
glement if L sends separable (i.e., product) vectors to
product vectors, and entangled vectors to entangled vec-
tors. They show that a linear map L preserves qualitative
entanglement of vectors on Cm ⊗ Cn iff L is a local op-
erator (i.e. one of the form L1 ⊗ L2), or if L is a local
operator composed with the swap map that takes x ⊗ y
to y ⊗ x. They then show that if L preserves a certain
quantitative measure of entanglement, then L must be a
local unitary.

Related work

While dimensions are too high to be able to accurately
visualize the above results, the reader may be curious
about the relationship of our results to the well known
tetrahedron/octahedron picture for m = n = 2, cf. Ref.
7. In that picture, there is a subset T of states which is
a tetrahedron, and which has the property that for every
state ρ which restricts to the normalized trace on B(C2)⊗
I and on I⊗B(C2), there are unitaries U and V such that
(U ⊗ V )∗ρ(U ⊗ V ) ∈ T . The midpoints of the six edges
of this tetrahedron are the vertices of an octahedron that
consists of the separable states in T . Each vertex of the
octahedron is a convex combination of two distinct pure
product states (which of course are not in T ), cf. eqn.
(63) of Ref. 20. In fact, the vertices are the only states
in the octahedron of length ≤ max(m,n) = 2.

It can be checked (e.g., by applying our Corollary 5)
that the decomposition of each of these vertices into pure
product states is unique. Each state in the interior of this
octahedron has rank 4 = mn, so is an interior point of the
full state space K, hence has a non-unique convex decom-
position into pure product states (see the remarks after
Theorem 6.) The tetrahedron also arises as a param-
eterization for a set of unital completely positive trace
preserving maps from M2(C) to M2(C), with the octa-
hedron consisting of the entanglement breaking maps in
this set, cf. Appendix B of Ref. 15, Thm. 4 of Ref. 23,
and Figure 2 in Ref. 24.

In proving the uniqueness results described above, an
important role is played by a description of the product
vectors in certain subspaces. For example, our Lemma 2
describes the product vectors in the span of a set of prod-

uct vectors x1⊗y1, . . . , xp⊗yp in the case where y1, . . . , yp
are linearly independent. Describing the set of prod-
uct vectors in a given subspace of Cm ⊗ Cn plays a role
in some tests of separability, e.g., the Range Criterion8.
This states that if ρ is separable, then there exist product
vectors x1⊗ y1, . . . , xp⊗ yp whose span is the range of ρ,
with the span of x1 ⊗ ȳ1, . . . , xp ⊗ ȳp being the range of
the partially transposed state ρT2 . The Range Criterion
has been used to construct states that are PPT states
but are not separable4.

Ref. 25 includes a description of the possibilities for
product vectors in two dimensional subspaces of C2⊗C2.
Ref. 17 shows that every subspace with dimension
greater than n in C2⊗Cn contains infinitely many prod-
uct vectors, and that a subspace of dimension n contains
at least one. On the other hand, for the purpose of find-
ing decompositions, it is helpful to know when there are
only finitely many product vector states in a subspace.
In Ref. 9 it is shown if ρ is a PPT state on Cm ⊗ Cn
such that rank(ρ) + rank(ρT2) ≤ 2mn−m− n+ 2, then
“typically” there are only finitely many product vector
states ωx⊗y such that x⊗ y is in the range of ρ and x⊗ ȳ
is in the range of ρT2 .

Our uniqueness results refer to the set of states that
can be written as a convex combination of product vector
states ωxi⊗yi with y1, . . . , yn independent. This set of
states has appeared in other contexts. In Ref. 17 (for
m = 2) and Lemma 6 and Thm. 1 of Ref. 9 (for general
m) it is shown that these states are the same as the PPT
states that are supported on Cm ⊗ Cn and have rank
n. (The difficult direction is to show that such states
are separable and admit a decomposition with y1, . . . , yn
independent; the other direction is clear.) Both Refs. 17
and 9 also describe algorithms to find decompositions of
such separable states into pure product states.

There are related results in the C2 ⊗ C2 ⊗ Cn context
in Ref. 14. A different kind of uniqueness result appears
in Ref. 18, where the existence of a decomposition of an
arbitary state into the sum of a separable (unnormalized)
state plus a state of minimal trace is proven; this decom-
position is shown to be unique in the C2 ⊗ C2 context.

II. BACKGROUND: STATES ON B(Cn)

We review basic facts about states on B(Cn), and de-
velop some facts about the relationship of independence
of vectors x in Cn and of the corresponding vector states
ωx. In the following sections we will specialize to the case
of interest: separable states.

Notation. If x is a vector in any vector space, [x] denotes
the subspace generated by x. Cn denotes the set of n-
tuples of complex numbers viewed as an inner product
space with the usual inner product (linear in the first
factor). B(Cn) denotes the linear transformations from
Cn into itself. For each unit vector x ∈ Cn, we denote the
associated vector state by ωx, so that ωx(A) = (Ax, x).
The convex set of states on B(Cn) will be denoted by Kn.
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We recall that faces of the state space Kn of B(Cn) are
in 1-1 correspondence with the projections in B(Cn), and
thus with the subspaces of Cn that are the ranges of these
projections. If Q is a projection in B(Cn), then the asso-
ciated face FQ of Kn consists of all states taking the value
1 on Q. The restriction map is an affine isomorphism
from FQ onto the state space of QB(Cn)Q ∼= B(Q(Cn)).
Thus FQ is affinely isomorphic to the state space of B(L),
where L = Q(Cn). The set of extreme points of Kn are
the vector states, and it follows that the extreme points
of FQ are the vector states ωx with x in the range of
Q, and FQ is the convex hull of these vector states. For
background, see Chapter 4 of Ref. 2

Definition. Recall that a convex set C is said to be
the direct convex sum of a collection of convex subsets
C1, . . . , Cp if each point ω ∈ C can be uniquely expressed
as a convex combination

ω =
∑
i∈I

λiωi (1)

where I ⊂ {1, . . . , p}, λi > 0 for all i ∈ I, ωi ∈ Ci for all
i ∈ I, and

∑
i∈I λi = 1.

If C is a convex subset of a real linear space and is
located on an affine hyperplane which does not contain
the origin (as is the case for our state spaces), then it
is easily seen that C is the direct convex sum of convex
subsets C1, . . . , Cp iff the span of C is the direct sum of
the real subspaces spanned by C1, . . . , Cp.

A finite dimensional convex set is a simplex if it is
the direct convex sum of a finite set of points. If the
affine span of the points does not contain the origin, then
their convex hull is a simplex iff the points are linearly
independent (over R).

Lemma 1. Let L be a subspace of Cn and suppose that L
is the direct sum of subspaces L1, . . . , Lp. Let F1, . . . , Fp
be the corresponding faces of the state space of B(Cn).
Then the convex hull of F1, . . . , Fp is the direct convex
sum of those faces. In particular, if x1, . . . , xp are lin-
early independent unit vectors, then the corresponding
vector states are linearly independent and the convex hull
of the corresponding vector states is a simplex.

Proof. Let I ⊂ {0, . . . , p}, and suppose {ωi | i ∈ I} are
nonzero functionals on B(Cn) with ωi ∈ spanR Fi for each
i. To prove independence of {ωi | i ∈ I}, suppose that
for scalars {γi}i∈I we have∑

i∈I
γiωi = 0. (2)

Let L0 be the orthogonal complement of L. Then Cn as
a linear space is the direct sum of L0, L1, . . . , Lp.

For each i ∈ I, let Pi be the projection associated with
Fi. Then we can find Ai ∈ PiB(Cn)Pi such that ωi(Ai) 6=
0. Let Bi ∈ B(Cn) be an operator such that Bi is zero
on

∑
j 6=i Lj , and such that ωi(Bi) 6= 0 (e.g., set Bi = Ai

on Li). If x ∈ Lj and j 6= i, then ωx(Bi) = (Bix, x) = 0.

Since every state in Fj is a convex combination of vector
states ωx with x ∈ Lj , then ωj(Bi) = 0 if j 6= i.

Now apply both sides of (2) to Bk to conclude that
γkωk(Bk) = 0 for all k ∈ I, so γk = 0 for all k ∈ I.
Thus the set of vectors ω1, . . . , ωp is independent. We
conclude that co(F1, . . . , Fp) is the direct convex sum of
F1, . . . , Fp.

If x1, . . . , xp are linearly independent unit vectors, ap-
plying the result above with Fi = {ωxi

} shows that the
convex hull of the vector states ωxi

is a simplex. Hence
the set {ωx1

, . . . , ωxp
} is linearly independent.

Note that the converses of the statements above are
not true. For example, while no set of more than two
vectors in C2 is independent, it is easy to find a set of
three linearly independent vector states on B(C2).

III. UNIQUENESS OF DECOMPOSITIONS OF
SEPARABLE STATES

We now turn to faces of the set of separable states on
B(Cm⊗Cn), and to the question of uniqueness of convex
decompositions of such states. We identify B(Cm ⊗ Cn)
with B(Cm)⊗B(Cn) by (A⊗B)(x⊗ y) = Ax⊗By. We
denote the convex set of all states on B(Cm⊗Cn) by K,
and the convex set of all separable states by S.

Lemma 2. Let e1, e2, . . . , ep and f1, f2, . . . , fp be unit
vectors in Cm and Cn respectively. We assume that
f1, f2, . . . , fp are linearly independent. If e ∈ Cm and
f ∈ Cn are unit vectors such that e ⊗ f is in the linear
span of {ei ⊗ fi | 1 ≤ i ≤ p}, then there is an index
j such that [e] = [ej ] and such that f is in the span of
those fi such that [ei] = [ej ]. In the special case where
[e1], . . . , [ep] are distinct, then [e] = [ej ] and [f ] = [fj ] for
some index j, and {ei ⊗ fi | 1 ≤ i ≤ p} is independent.

Proof. Extend f1, . . . , fp to a basis f1, . . . , fn of Cn, and

let f̂1, . . . , f̂n be the dual basis. For 1 ≤ k ≤ n, let
Tk : Cm ⊗Cn → Cm be the linear map such that Tk(x⊗
y) = f̂k(y)x for x ∈ Cm, y ∈ Cn.

Suppose that the product vector e⊗ f is a linear com-
bination

e⊗ f =

p∑
i=1

αiei ⊗ fi. (3)

For j > p, applying Tj to both sides of (3) gives f̂j(f)e =

0, so f̂j(f) = 0 for all such j. Now if 1 ≤ j ≤ p, applying
Tj to both sides of (3) gives

f̂j(f)e = αjej . (4)

Since f̂j(f) can’t be zero for all j, then e is a multiple of
some ej . Fix such an index j. If 1 ≤ i ≤ p and [ei] 6= [ej ],

then ei can’t be a multiple of e, so f̂i(f)e = αiei implies

αi = 0, and then also f̂i(f) = 0. We have shown that
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f̂i(f) = 0 if i > p, or if i ≤ p and [ei] 6= [ej ]. It follows
that f is in the linear span of those fi such that [ei] = [ej ].

If it also happens that [e1], . . . , [ep] are distinct, and
[e] = [ej ], then [f ] = [fj ]. Suppose now that

∑
i αiei ⊗

fi = 0. If αk 6= 0, then ek ⊗ fk is a linear combination
of {ei⊗ fi | i 6= k}. Thus by the conclusion just reached,
we must have [ek] = [ei] for some i 6= k, contrary to the
hypothesis that [e1], . . . , [ep] are distinct. We conclude
that αk = 0 for all k, and we have shown that {ei ⊗ fi |
1 ≤ i ≤ p} is independent.

Lemma 3. Let e1, . . . , ep ∈ Cm and f1, . . . , fp ∈ Cn be
unit vectors. If [e1] = [e2] = . . . = [ep], then the face
F of S generated by the states {ωei⊗fi | 1 ≤ i ≤ p} is
also a face of K, and this face of K is associated with
the subspace L = e1 ⊗ span{f1, . . . , fp} of Cm ⊗Cn, and
F is affinely isomorphic to the state space of B(L).

Proof. Let G be the face of K which is associated with
the subspace L of Cm ⊗ Cn. By assumption each ei is a
multiple of e1, so that

L = span{e1⊗fi | 1 ≤ i ≤ p} = span{ei⊗fi | 1 ≤ i ≤ p}.

Hence G is the face of K generated by {ωei⊗fi | 1 ≤ i ≤
p}.

We would like to show G = F . For brevity we denote
the convex hull of the set {ωei⊗fi | 1 ≤ i ≤ p} by C,
and observe that G and F are the faces of K and S
respectively generated by C. It follows easily from the
definition of a face that the face generated by the convex
set C in either one of the two convex sets S or K consists
of all points ρ in S or K respectively which satisfy an
equation

ω = λρ+ (1− λ)σ (5)

where 0 < λ < 1, ω ∈ C, and where σ is in S or K
respectively. It follows that F = faceS(C) ⊂ faceK(C) =
G.

Since each vector in L is a product vector, the extreme
points of G are pure product states, so G ⊂ S. If ρ is in
the face G of K generated by C, then we can find σ ∈ K
and ω ∈ C such that (5) holds. Then σ is also in G ⊂ S,
so both ρ and σ are in S. Hence ρ is in the face F of S
generated by C. Thus G ⊂ F , and so F = G follows.

So far we have considered collections of product vec-
tors {ei ⊗ fi} with {f1, . . . , fp} linearly independent. In
Lemma 3 we have described the face F of S generated
these states in the special case where all of the ei are
multiples of each other. In this case F is also a face of
K.

We now remove the restriction that all of the one di-
mensional subspaces [ei] coincide. We are going to parti-
tion the set of vectors ei⊗fi into subsets for which these
subspaces coincide, and apply Lemma 3 to each such sub-
set. For simplicity of notation, we renumber the vectors
in the fashion we now describe.

Theorem 4. Let e1, e2, . . . , ep and f1, f2, . . . , fp be unit
vectors in Cm and Cn respectively, and with f1, . . . , fp
linearly independent. We assume that the vectors are
ordered so that [e1], . . . , [eq] are distinct, and so that for
i > q each [ei] equals one of [e1], . . . , [eq]. For 1 ≤ i ≤ q,
let Fi be the face of S generated by the states {ωej⊗fj |
[ej ] = [ei]} and 1 ≤ j ≤ p}. Then each Fi is also a face
of K, and the face F of S generated by {ωei⊗fi | 1 ≤
i ≤ p} is the direct convex sum of F1, . . . , Fq. Moreover,
each Fi is affinely isomorphic to the state space of B(Li),
where Li = ei⊗ span{fj | [ei] = [ej ]}. In the special case
when [e1], . . . , [ep] are distinct, then F is the convex hull
of {ωei⊗fi | 1 ≤ i ≤ p}, and F is a simplex.

Proof. By Lemma 3, the face Fi of S is equal to the face
of K generated by {ωej⊗fj | [ej ] = [ei]}, and is affinely
isomorphic to the state space of B(Li).

We will show L1, . . . , Lq are independent (i.e., that
L1 + L2 + · · ·Lq is a vector space direct sum). For
1 ≤ i ≤ q let ei ⊗ gi be a nonzero vector in Li. For
i 6= j, gi and gj are linear combinations of disjoint sub-
sets of f1, f2, . . . , fp, so by independence of f1, f2, . . . , fp,
the subset {g1, . . . , gq} is independent. Thus by Lemma
2, {e1 ⊗ g1, . . . , ep ⊗ gp} is independent, and hence the
subspaces L1, . . . , Lq are independent. Hence by Lemma
1, the convex hull of the faces Fi is a direct convex sum
of those faces.

Finally, we need to show that this convex hull coincides
with the face F of S. Extreme points of F are extreme
points of S, so are pure product states. Suppose that
ωx⊗y is a pure product state in F . Then ωx⊗y is in the
face of K generated by {ωei⊗fi | 1 ≤ i ≤ p}, so x⊗y is in
span{ei⊗fi | 1 ≤ i ≤ p}. By Lemma 2, [x] = [ej ] for some
j, and y ∈ span{yi | [ei] = [ej ]}. Hence ωx⊗y ∈ Fj . Thus
each extreme point of F is in some Fj , so F is contained
in the convex hull of {Fi | 1 ≤ i ≤ q}. Evidently F
contains every Fj , so this convex hull equals F .

In Theorem 4 we showed that the face F is the di-
rect convex sum of faces that are affinely isomorphic to
state spaces of full matrix algebras. Convex sets of this
type were studied by Vershik (in both finite and infinite
dimensions), who called them block simplexes29. Other
examples are provided by state spaces of any finite di-
mensional C*-algebra. Our Theorem 4 provides new ex-
amples of such block simplexes.

Corollary 5. Let e1, e2, . . . , ep and f1, f2, . . . , fp be unit
vectors in Cm and Cn respectively. We assume that
[ei] 6= [ej ] for i 6= j, and that f1, f2, . . . , fp are linearly
independent. If λ1, . . . , λk are nonnegative numbers with
sum 1, then the separable state ω =

∑
i λiωei⊗fi has a

unique representation as a convex combination of pure
product states.

Proof. Suppose ω equals the convex combination
∑
j γjτj

where each τj is a pure product state. Then each τj is
in the face F of S generated by ω. By Theorem 4, F
is a simplex, and the extreme points of F are all of the
form ωei⊗fi . Since each τj is a vector state, it is a pure
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state as well, so each state τj must be an extreme point
of F , and thus must equal some ωei⊗fi . Uniqueness of
the representation of ω follows from the uniqueness of
convex decompositions into extreme points of a (finite
dimensional) simplex.

Definition. A separable state ω has length k if ω can
be expressed as a convex combination of k pure product
states and admits no decomposition into fewer than k
pure product states. We denote by Sk the set of separable
states of length at most k.

Definition. A separable state ω has a unique decomposi-
tion if it can be written as a convex combination of pure
product states in just one way

By the above result, roughly speaking decompositions
of separable states on B(Cm⊗Cn) of length ≤ max(m,n)
generically are unique. Here’s a more precise statement.

Let k ≤ max(m,n), and let Vk be the set of states ω

admitting a convex decomposition ω =
∑k
i=1 λiωei⊗fi ,

where e1, . . . , ek and f1, . . . , fk are unit vectors in Cm
and Cn respectively, 0 < λi for 1 ≤ i ≤ k, [e1], . . . , [ek]
are distinct, and {f1, . . . , fk} is linearly independent.

Theorem 6. Let m,n > 1. For a given k ≤ max(m,n),
the states in Vk have length k, and have unique decom-
positions. The set Vk is open and dense in the set Sk of
separable states of length at most k.

Proof. Without loss of generality, we may assume m ≤ n.
By Corollary 5, each ω ∈ Vk admits a unique representa-
tion as a convex combination of pure product states, and
each state in Vk has length k. We will show that Vk is
open and dense in Sk.

To prove density, let ω ∈ Sk have a convex decom-

position ω =
∑k
i=1 λiωxi⊗yi . By slightly perturbing the

coefficients λi if necessary, we may assume that λi > 0
for all i.

Given ε > 0, by perturbing each xi and yi if necessary,
we can find a second convex combination of pure prod-

uct states ω′ =
∑k
i=1 λiωei⊗fi with ‖ω − ω′‖ < ε, with

[e1], . . . , [ek] distinct, and with {f1, . . . , fk} independent.
(Indeed, to achieve independence we may append unit
vectors yk+1, . . . , yn to the vectors y1, . . . , yk to give the
subset {y1, y2, . . . , yn} of Cn, and by small perturbations
arrange that the determinant of the matrix with columns
y1, . . . , yn is nonzero.) Thus Vk is dense in Sk. The norm
intended above is the usual norm for linear functionals
on Mn, called the base norm, cf. Ref. 2, but in finite di-
mensions all norms are equivalent, so density holds with
respect to any norm.

Let I0 = {(λ1, λ2, . . . , λk) ∈ [0, 1]k |
∑
i λi = 1}. Let

Um be the unit sphere of Cm and Un the unit sphere of
Cn. Let X = I0 × (Um)k × (Un)k. Define ψ : X → S by

ψ((λ1, . . . , λk), (x1, . . . , xk), (y1, . . . , yk)) =
∑
i

λiωxi⊗yi .

Note that ψ is continuous, thatX is compact with respect
to the product topology, and that ψ(X) = Sk.

Now let X0 be the set
{((λ1, . . . , λk), (x1, . . . , xk), (y1, . . . , yk))} of mem-
bers of X such that [x1], . . . , [xk] are distinct, such
that {y1, . . . , yk} is linearly independent, and such that
λi > 0 for 1 ≤ i ≤ k. By lower semicontinuity of the
rank of a matrix whose columns are y1, . . . , yk, the set
of elements ((λ1, . . . , λk), (x1, . . . , xm), (y1, . . . , yk)) of X
with {y1, . . . , yk} linearly independent is open in X, so it
is clear that X0 is an open subset of X. By construction,
ψ(X0) = Vk. Since X0 is open in X, then X \ X0 is
closed and hence compact. Since ψ maps X \ X0 onto
Sk \ ψ(X0), then the latter is closed, so Vk = ψ(X0) is
open in Sk.

As remarked in the introduction, the sets Vk are open
and dense in the relative topology on Sk, but are not
open or dense in S or K if mn > 1. To see this recall
that a point σ in a convex set C is an algebraic interior
point if for every point ρ in C there is a point τ in C
such that σ lies on the open line segment from ρ to τ .
Clearly for every algebraic interior point σ of S and every
pure product state ρ, there is a convex decomposition of
σ that includes ρ with positive weight. Since there are
infinitely many pure product states, there are infinitely
many convex decompositions for every algebraic interior
point of S.

Every nonempty subset which is open in S contains an
algebraic interior point of S, cf. pp. 88–91 of Ref. 27,
so contains points with nonunique decompositions. Thus
Vk is not open in S or K. It is not dense in S or K,
since for any m,n there exists r > 0 such that all states
σ within a distance r from the normalized tracial state
are separable, cf. Thm. 1 of Ref. 32. Every such state σ
is an algebraic interior point of S, and so fails to have a
unique decomposition.

Observe that Theorem 6 implies that Vk is also open
and dense in the set of separable states of length equal
to k.

IV. DESCRIPTION OF CONVEX DECOMPOSITIONS

Let e1, e2, . . . , ep and f1, f2, . . . , fp be unit vectors in
Cm and Cn respectively, with f1, . . . , fp linearly inde-
pendent. Suppose ω is a convex combination of {ωei⊗fi |
1 ≤ i ≤ p}. In this section, we will describe all convex
decompositions of ω into pure product states.

Let ω =
∑
i λiωi be any convex decomposition of ω

into pure product states. Then following the notation of
Theorem 4, each ωi is in faceS(ω) ⊂ F . Since each ωi is
an extreme point of S, and F is the direct convex sum
of the faces Fi, then each ωi must be in some Fk. If we
define γk =

∑
{i|ωi∈Fk} λi and σk = γ−1k

∑
{i|ωi∈Fk} λiωi,

then ω has the convex decomposition

ω =
∑
k

γkσk with σk ∈ Fk for each k. (6)
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Since F is the direct convex sum of the Fk, the decom-
position of ω in (6) is unique.

All possible convex decompositions of ω into pure prod-
uct states can be found by starting with the unique de-
composition ω =

∑
k γkσk with σk ∈ Fk, and then de-

composing each σk into pure states. (Every state in Fk is
separable, so pure states are pure product states). Since
Fk is affinely isomorphic to the state space of B(Lk), un-
less each σk is itself a pure state, this can be done in
many ways, as we discussed in the introduction. The
possibilities have been described in Refs. 10, 16, and 26.

A decomposition of a separable state ω as a convex
combination of pure product states can be interpreted as
a representation of ω as the barycenter of a probability
measure on the extreme points of S. With this interpre-
tation the statement above can be rephrased in terms of
the concept of dilation of measures (as defined, e.g., on
p. 25 of Ref. 1). If ω is given as above, then the prob-
ability measures on pure product states that represent
ω are precisely those which are dilations of the uniquely
determined probability measure µ =

∑
k γkµk obtained

from (6) with µk = δσk
.

V. AFFINE AUTOMORPHISMS OF THE SPACE S OF
SEPARABLE STATES

Notation. Fix m,n. We denote the state space of B(Cm)
by Km, the state space of B(Cn) by Kn, and the state
space of B(Cm ⊗ Cn) by K or Km,n. The convex set
of separable states in K is denoted by S or Sm,n. We

will sometimes deal with a second algebra B(Cm′ ⊗Cn′
),

whose state space and separable state spaces we will de-
note by K ′ or S′ respectively.

From Theorem 4, the face of S generated by two dis-
tinct pure product states ω1 ⊗ σ1 and ω2 ⊗ σ2 is a line
segment (if ω1 6= ω2 and σ1 6= σ2) or is isomorphic to the
state space of B(C2) and hence is a 3-ball (when ω1 = ω2

but σ1 6= σ2, or when σ1 = σ2 but ω1 6= ω2). (By a 3-ball
we mean a convex set affinely isomorphic to the closed
unit ball of R3. The fact that the state space of B(C2) is
a 3-ball can be found in many places, e.g., Thm. 4.4 of
Ref. 2.)

We define a relation R on the pure product states of
K by ρ R τ if faceS(ρ, τ) is a 3-ball. By the remarks
above, (ω1⊗σ1) R (ω2⊗σ2) iff (ω1 = ω2 but σ1 6= σ2) or
(σ1 = σ2 but ω1 6= ω2). Note that an affine isomorphism
Φ : S → S′ will take faces of S to faces of S′, and will
take 3-balls to 3-balls, so for pure product states ρ, τ we
have ρ R τ iff Φ(ρ) R Φ(τ).

The idea of the following lemmas is to show that if
Φ(ω⊗σ) = φ(ω, σ)⊗ψ(ω, σ), then φ depends only on the
first argument and ψ depends only on the second argu-
ment, or possibly vice versa. Although we are interested
in affine automorphisms of a single space of separable
states, it will be easier to establish the needed lemmas in
the context of affine isomorphisms from S to S′.

We use the notation ∂eC for the set of extreme points
of a convex set C. For example, ∂eK is the set of pure
states on B(Cm ⊗ Cn).

Lemma 7. Let Φ : Sm,n → Sm′,n′ be an affine isomor-
phism. Let ω1, ω2 be distinct pure states in Km and σ1,
σ2 distinct pure states in Kn. Then the following four
equations cannot hold simultaneously.

Φ(ω1 ⊗ σ1) = ρ1 ⊗ τ1
Φ(ω1 ⊗ σ2) = ρ1 ⊗ τ2
Φ(ω2 ⊗ σ1) = ρ2 ⊗ τ3
Φ(ω2 ⊗ σ2) = ρ3 ⊗ τ3

(7)

for ρ1, ρ2, ρ3 ∈ ∂eKm′ and τ1, τ2, τ3 ∈ ∂eKn′ .

Proof. We assume for contradiction that all four equa-
tions hold. Since (ω1 ⊗ σ1) R (ω2 ⊗ σ1), then (ρ1 ⊗
τ1) R (ρ2 ⊗ τ3). Hence

ρ1 = ρ2 or τ1 = τ3. (8)

Similarly (ω1 ⊗ σ2) R (ω2 ⊗ σ2), so (ρ1 ⊗ τ2) R (ρ3 ⊗ τ3).
Hence

ρ1 = ρ3 or τ2 = τ3. (9)

Since we are assuming that ω1 6= ω2 and σ1 6= σ2, the
four states {ωi⊗σj | 1 ≤ i, j ≤ 2} are distinct, so the four
states on the right side of (7) must be distinct. Combin-
ing (8) and (9) gives four possibilities, each contradicting
the fact that the states on the right side of (7) are dis-
tinct. Indeed:

(ρ1 = ρ2 and ρ1 = ρ3) =⇒ ρ2 ⊗ τ3 = ρ3 ⊗ τ3
(ρ1 = ρ2 and τ2 = τ3) =⇒ ρ1 ⊗ τ2 = ρ2 ⊗ τ3
(τ1 = τ3 and ρ1 = ρ3) =⇒ ρ1 ⊗ τ1 = ρ3 ⊗ τ3
(τ1 = τ3 and τ2 = τ3) =⇒ ρ1 ⊗ τ1 = ρ1 ⊗ τ2.

We conclude that the four equations in (7) cannot hold
simultaneously.

Definition. Recall that we identify B(Cm ⊗ Cn) with
B(Cm)⊗B(Cn). The swap isomorphism (αm,n)∗ : B(Cn⊗
Cm) → B(Cm ⊗ Cn) is the *-isomorphism that satisfies
(αm,n)∗(A ⊗ B) = B ⊗ A. If operators in B(Cm ⊗ Cn)
are identified with matrices, the swap isomorphism is the
same as the “canonical shuffle” discussed in Chapter 8 of
Ref. 21. The dual map αm,n is an affine isomorphism
from the state space of B(Cm⊗Cn) to the state space of
B(Cn ⊗ Cm), with αm,n(ω ⊗ σ) = σ ⊗ ω. This restricts
to an affine isomorphism from Sm,n to Sn,m, which we
also refer to as the swap isomorphism. If m = n, then
(αm,m)∗ is a *-automorphism of B(Cm⊗Cm), αm,m is an
affine automorphism of the state space K, and restricts
to an affine automorphism of the space S of separable
states.
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Lemma 8. Let Φ : Sm,n → Sm′,n′ be an affine iso-
morphism. At least one of the following two possibilities
occurs:

(i) For every ω ∈ ∂eKm there exists ρ ∈ ∂eKm′ such
that Φ(ω⊗Kn) = ρ⊗Kn′ , and for every σ ∈ ∂eKn

there exists τ ∈ ∂eKn′ such that Φ(Km ⊗ σ) =
Km′ ⊗ τ .

(ii) For each ω ∈ ∂eKm there exists τ ∈ ∂eKn′ such
that Φ(ω⊗Kn) = Km′⊗τ , and for every σ ∈ ∂eKn

there exists ρ ∈ ∂eKm′ such that Φ(Km ⊗ σ) =
ρ⊗Kn′ .

If (i) occurs, then m = m′ and n = n′. If (ii) occurs,
then m = n′ and n = m′.

Proof. For fixed ω ∈ ∂eKm and distinct σ1, σ2 ∈ ∂eKn we
have (ω⊗σ1) R (ω⊗σ2), so Φ(ω⊗σ1) R Φ(ω⊗σ2). Thus
either there exist ρ1 ∈ ∂eKm′ and distinct τ1, τ2 ∈ ∂eKn′

such that

Φ(ω ⊗ σi) = ρ1 ⊗ τi for i = 1, 2, (10)

or there exist distinct ρ1, ρ2 ∈ ∂eKm′ and τ3 ∈ ∂Kn′ such
that

Φ(ω ⊗ σi) = ρi ⊗ τ3 for i = 1, 2. (11)

We will show that (10) implies (i), and (11) implies (ii).
Suppose that (10) holds. Let σ ∈ ∂eKn with σ 6= σ1

and σ 6= σ2, and let Φ(ω⊗σ) = ρ⊗τ . Since (ω⊗σ) R (ω⊗
σi) for i = 1, 2, then (ρ⊗τ) R (ρ1⊗τi) for i = 1, 2. Hence
(ρ = ρ1 or τ = τ1) and (ρ = ρ1 or τ = τ2). Since τ1 6= τ2,
then ρ = ρ1. It follows that Φ(ω⊗Kn) ⊂ ρ1⊗Kn′ . Thus

Φ(ω⊗σi) = ρ1⊗τi for i = 1, 2 =⇒ Φ(ω⊗Kn) ⊂ ρ1⊗Kn′ .
(12)

Now (10) also implies

Φ−1(ρ1 ⊗ τi) = ω ⊗ σi for i = 1, 2. (13)

If (10) holds (and hence also (13), then applying the
implication (12) to (13) with Φ−1 in place of Φ shows
Φ−1(ρ1 ⊗ Kn′) ⊂ ω ⊗ Kn, so by (12) equality holds.
Hence we have shown

Φ(ω⊗σi) = ρ1⊗τi for i = 1, 2 =⇒ Φ(ω⊗Kn) = ρ1⊗Kn′ .
(14)

Now suppose instead that (11) holds. Let αm′,n′ be the
swap affine isomorphism defined above, so that αm′,n′ :
Sm′,n′ → Sn′,m′ . Then

(αm′,n′ ◦Φ)(ω⊗σi) = αm′,n′(ρi⊗τ3) = τ3⊗ρi for i = 1, 2.
(15)

By the implication (14) applied to αm′,n′ ◦Φ we conclude
that

(αm′,n′ ◦ Φ)(ω ⊗Kn) = τ3 ⊗Km′ ,

so

Φ(ω ⊗Kn) = α−1m′,n′(τ3 ⊗Km′) = Km′ ⊗ τ3.

Thus we have proven the implication

Φ(ω⊗σi) = ρi⊗τ3 for i = 1, 2 =⇒ Φ(ω⊗Kn) = Km′⊗τ3.
(16)

By Lemma 7 and the implications (14) and (16), either
(10) must hold for all ω ∈ ∂eKm or (11) must hold for
all ω ∈ ∂eKm. We conclude that either

∀ω ∈ ∂eKm ∃ρ ∈ ∂eKm′ such that Φ(ω⊗Kn) = ρ⊗Kn′

(17)
or

∀ω ∈ ∂eKm ∃τ ∈ ∂eKn′ such that Φ(ω⊗Kn) = Km′⊗τ.
(18)

Similarly, either

∀σ ∈ ∂eKn ∃τ ′ ∈ ∂eKn′ such that Φ(Km⊗σ) = Km′⊗τ ′
(19)

or

∀σ ∈ ∂eKn ∃ρ′ ∈ ∂eKm′ such that Φ(Km⊗σ) = ρ′⊗Kn′ .
(20)

Suppose that (17) and (20) both held. For ω ∈ Km

and σ ∈ Kn note that ω ⊗ σ is in both ω ⊗ Kn and
Km ⊗ σ, so ρ ⊗Kn′ and ρ′ ⊗Kn′ are not disjoint. This
implies ρ = ρ′, so Φ(ω ⊗ Kn) = Φ(Km ⊗ σ). Since Φ
is bijective, ω ⊗Kn = Km ⊗ σ follows. This is possible
only if m = n = 1. If m = n = 1, then all of (17), (18),
(19), (20) hold. Similarly if (18) and (19) both held then
m = n = 1 is again forced. Thus the possibilities are that
(17) and (19) both hold (which is the same as statement
(i) of the lemma), or that (18) and (20) hold (equivalent
to (ii)), or that m = n = 1, in which case both (i) and
(ii) hold.

Finally, since the affine dimensions of Kp and Kq are
different when p 6= q, the statement in the last sentence
of the lemma follows.

If ψ1 : Km → Km and ψ2 : Kn → Kn are affine auto-
morphisms, then we can extend each to linear maps on
the linear span, and form the tensor product ψ1 ⊗ ψ2.
This will be bijective, but not necessarily positive. (A
well known example of this phenomenon occurs when ψ1

is the identity map and ψ2 is the transpose map.) How-
ever, ψ1 and ψ2 will map pure states to pure states, and
hence ψ1⊗ψ2 will map pure product states to pure prod-
uct states. Thus ψ1 ⊗ ψ2 will map S onto S, and hence
will be an affine automorphism of S. We will now see
that all affine automorphisms of S are either such a ten-
sor product of automorphisms or such a tensor product
composed with the swap automorphism.

Theorem 9. If m 6= n, and Φ : S → S is an affine
automorphism, then there exist unique affine automor-
phisms ψ1 : Km → Km and ψ2 : Kn → Kn such
that Φ = ψ1 ⊗ ψ2. If m = n then either we can write
Φ = (ψ1⊗ψ2) or Φ = αm,m ◦ (ψ1⊗ψ2), where ψ1, ψ2 are
again unique affine automorphisms of Km and Kn re-
spectively, and αm,m : S → S is the swap automorphism.
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Proof. We apply Lemma 8. For each ω ∈ ∂eKm and
σ ∈ ∂eKn, define φσ : Km → Km and ψω : Kn → Kn by

Φ(ω ⊗ σ) = φσ(ω)⊗ ψω(σ).

Suppose first that case (i) of Lemma 8 occurs. Then
ψσ(ω) is independent of σ and ψω(σ) is independent of
ω. Therefore there are functions ψ1 : Km → Km and
ψ2 : Kn → Kn such that

Φ(ω ⊗ σ) = ψ1(ω)⊗ ψ2(σ).

Since Φ is bijective and affine, so are ψ1 and ψ2.
Suppose instead that case (ii) of Lemma 8 occurs.

Then m = n. If we define Φ′ = αm,m◦Φ, then Φ′ : S → S
satisfies case (i) of Lemma 8. Then from the first para-
graph we can choose affine automorphisms ψ1 : Km →
Km and ψ2 : Kn → Kn such that Φ′ = ψ1 ⊗ ψ2. Since
α2
m,m is the identity map, then Φ = αm,m◦(ψ1⊗ψ2).

We review some well known facts about affine auto-
morphisms of state spaces and maps on the underly-
ing algebra. Let ψ be an affine automorphism of Km.
Then ψ extends uniquely to a linear map on the linear
span of Km, which we also denote by ψ, and this map
is the dual of a unique linear map ψ∗ on B(Cm). By
a result of Kadison12 ψ∗ will be a *-isomorphism or a
*-anti-isomorphism. (Since the restriction of an affine
automorphism to pure states preserves transition proba-
bilities, this also follows from Wigner’s theorem31). The
map ψ∗ will be a *-isomorphism iff ψ∗ is completely pos-
itive, which is equivalent to ψ being completely positive.
If ψ∗ is a *-isomorphism, then ψ∗ is implemented by a
unitary, i.e., there is a unitary U ∈ B(Cm) such that
ψ∗(A) = UAU∗.

If ψ∗ is a *-anti-isomorphism, then the composition of
ψ∗ with the transpose map (in either order) gives a *-
isomorphism, and the map ψ∗ is completely copositive.
It follows that an affine automorphism ψ of Km is either
completely positive or completely copositive, and ψ is
completely positive iff ψ−1 is completely positive. If t
denotes the transpose map on B(Cm) or B(Cn), then
t is positive but t ⊗ id and id ⊗ t are not positive on
B(Cm)⊗B(Cn) if m,n > 1. Background can be found in
Chapters 4 and 5 of Ref. 2.

Recall that a local unitary in B(Cm ⊗ Cn) is a tensor
product U1 ⊗ U2 of unitaries.

Theorem 10. Every affine automorphism of the space
S of separable states on B(Cm⊗Cn) is the dual of conju-
gation by local unitaries, one of the two partial transpose
maps, the swap map (if m = n), or a composition of these
maps. An affine automorphism Φ of S extends uniquely
to an affine automorphism of the full state space K iff
it can be expressed as one of the compositions just men-
tioned with both or neither of the partial transpose maps
involved.

Proof. We note first that if m = 1 or n = 1, the result is
clear, so we assume hereafter that m ≥ 2 and n ≥ 2.

We next show that if ψ1 : Km → Km and ψ2 : Kn →
Kn are affine automorphisms, then Φ = ψ1 ⊗ ψ2 is an
affine automorphism of K iff ψ1 and ψ2 are both com-
pletely positive or both completely copositive.

If ψ1 and ψ2 are completely positive, then Φ = ψ1 ⊗
ψ2 = (id⊗ ψ2) ◦ (ψ1 ⊗ id) is positive; hence Φ(K) ⊂ K.
Furthermore, ψ−11 and ψ−12 will be completely positive,
so Φ−1 is positive, and hence Φ(K) = K. If ψ1 and ψ2 are
completely copositive, then (t ◦ ψ1)⊗ (t ◦ ψ2) is positive.
Composing with t ⊗ t shows ψ1 ⊗ ψ2 is positive and as
above we conclude that Φ(K) = K. On the other hand, if
ψ1 is completely positive and ψ2 is completely copositive,
then ψ1 ⊗ (t ◦ ψ2) is positive, so (id ⊗ t) ◦ (ψ1 ⊗ ψ2) is
positive. If (ψ1 ⊗ ψ2)(K) = K, then id ⊗ t would be
positive, a contradiction since m,n ≥ 2. Thus in this
case ψ1 ⊗ ψ2 is not an affine automorphism of K.

If ψ1 and ψ2 are completely positive, then they are
implemented by unitaries, so Φ = ψ1⊗ψ2 is implemented
by a local unitary. If both are completely copositive,
then t ◦ ψ1 and t ◦ ψ2 are implemented by unitaries, so
(t⊗t)◦(ψ1⊗ψ2) is implemented by a local unitary. Then
Φ = (t⊗ t) ◦ (t⊗ t) ◦ (ψ1 ⊗ ψ2) is the composition of the
transpose map on K and conjugation by local unitaries.

The first statement of the theorem now follows from
Theorem 9. Uniqueness follows from the fact that the
linear span of S contains K.

Definition. Let Φ : K → K be an affine automorphism.
We say Φ preserves separability if Φ takes separable states
to separable states, i.e., if Φ(S) ⊂ S. A state ω in K is
entangled if ω is not separable. Φ preserves entanglement
if Φ takes entangled states to entangled states.

Corollary 11. Let Φ : Km,n → Km,n be an affine auto-
morphism. Then Φ preserves entanglement and separa-
bility iff Φ is a composition of maps of the types (i) con-
jugation by local unitaries, (ii) the transpose map, (iii)
the swap automorphism (in the case that m = n).

Proof. If Φ preserves entanglement and separability, then
Φ maps S into S and K\S into K\S, which is equivalent
to Φ(S) = S.

Corollary 12. If Φt : S → S is a one-parameter group
of affine automorphisms, then there are one-parameter
groups of unitaries Ut and Vt such that (Φtω)(A) =
ω((Ut ⊗ Vt)A(U∗t ⊗ V ∗t )).

Proof. For each t, factor Φt = φt⊗ψt or Φt = α◦(φt⊗ψt),
where α is the swap automorphism. In the latter case,

Φ2t = Φt ◦ Φt = α ◦ (φt ⊗ ψt) ◦ α ◦ (φt ⊗ ψt)

= (φt ⊗ ψt) ◦ (φt ⊗ ψt) = (φt ◦ φt)⊗ (ψt ◦ ψt).

It follows that the swap automorphism is not needed for
Φ2t, and hence for Φt for any t. Uniqueness of the fac-
torization Φt = φt⊗ψt shows that φt and ψt are also one
parameter groups of affine automorphisms. By a result
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of Kadison13, such automorphisms are implemented by
one parameter groups of unitaries.

Corollary 13. If Φt : K → K is a one-parameter group
of entanglement preserving affine automorphisms, then
there are one-parameter groups of unitaries Ut and Vt
such that (Φtω)(A) = ω((Ut ⊗ Vt)A(U∗t ⊗ V ∗t )).

Proof. Since Φt and (Φt)
−1 = Φ−t preserve entangle-

ment, then Φt maps S onto S, so this corollary follows
from Corollary 12.
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32K. Życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Vol-
ume of the set of separable states. Phys. Rev. A (3) 58 (1998),
no. 2, 883–892.


